Transcription factor activity inference

scRNA-seq yield many molecular readouts that are hard to interpret by themselves. One way of summarizing this information is by infering transcription factor (TF) activities from prior knowledge.

In this notebook we showcase how to use decoupler for TF activity inference with the 3k PBMCs 10X data-set. The data consists of 3k PBMCs from a Healthy Donor and is freely available from 10x Genomics here from this webpage

Note

This tutorial assumes that you already know the basics of decoupler. Else, check out the Usage tutorial first.

Loading packages

First, we need to load the relevant packages, scanpy to handle scRNA-seq data and decoupler to use statistical methods.

[1]:
import scanpy as sc
import decoupler as dc

# Plotting options, change to your liking
sc.settings.set_figure_params(dpi=200, frameon=False)
sc.set_figure_params(dpi=200)
sc.set_figure_params(figsize=(4, 4))

Loading the data

We can download the data easily using scanpy:

[2]:
adata = sc.datasets.pbmc3k_processed()
adata
[2]:
AnnData object with n_obs × n_vars = 2638 × 1838
    obs: 'n_genes', 'percent_mito', 'n_counts', 'louvain'
    var: 'n_cells'
    uns: 'draw_graph', 'louvain', 'louvain_colors', 'neighbors', 'pca', 'rank_genes_groups'
    obsm: 'X_pca', 'X_tsne', 'X_umap', 'X_draw_graph_fr'
    varm: 'PCs'
    obsp: 'distances', 'connectivities'

We can visualize the different cell types in it:

[3]:
sc.pl.umap(adata, color='louvain')
../_images/notebooks_dorothea_7_0.png

CollecTRI network

CollecTRI is a comprehensive resource containing a curated collection of TFs and their transcriptional targets compiled from 12 different resources. This collection provides an increased coverage of transcription factors and a superior performance in identifying perturbed TFs compared to our previous DoRothEA network and other literature based GRNs. Similar to DoRothEA, interactions are weighted by their mode of regulation (activation or inhibition).

For this example we will use the human version (mouse and rat are also available). We can use decoupler to retrieve it from omnipath. The argument split_complexes keeps complexes or splits them into subunits, by default we recommend to keep complexes together.

[4]:
net = dc.get_collectri(organism='human', split_complexes=False)
net
[4]:
source target weight PMID
0 MYC TERT 1 10022128;10491298;10606235;10637317;10723141;1...
1 SPI1 BGLAP 1 10022617
2 SMAD3 JUN 1 10022869;12374795
3 SMAD4 JUN 1 10022869;12374795
4 STAT5A IL2 1 10022878;11435608;17182565;17911616;22854263;2...
... ... ... ... ...
43173 NFKB hsa-miR-143-3p 1 19472311
43174 AP1 hsa-miR-206 1 19721712
43175 NFKB hsa-miR-21-5p 1 20813833;22387281
43176 NFKB hsa-miR-224-5p 1 23474441;23988648
43177 AP1 hsa-miR-144 1 23546882

43178 rows × 4 columns

Note

In this tutorial we use the network CollecTRI, but we could use any other GRN coming from an inference method such as CellOracle, pySCENIC or SCENIC+.

Activity inference with univariate linear model (ULM)

To infer TF enrichment scores we will run the univariate linear model (ulm) method. For each cell in our dataset (adata) and each TF in our network (net), it fits a linear model that predicts the observed gene expression based solely on the TF’s TF-Gene interaction weights. Once fitted, the obtained t-value of the slope is the score. If it is positive, we interpret that the TF is active and if it is negative we interpret that it is inactive.

3e8f64c30f104ebd97bd09fbde1d70df

To run decoupler methods, we need an input matrix (mat), an input prior knowledge network/resource (net), and the name of the columns of net that we want to use.

[5]:
dc.run_ulm(
    mat=adata,
    net=net,
    source='source',
    target='target',
    weight='weight',
    verbose=True
)
1 features of mat are empty, they will be removed.
Running ulm on mat with 2638 samples and 13713 targets for 608 sources.
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  1.93it/s]

The obtained scores (ulm_estimate) and p-values (ulm_pvals) are stored in the .obsm key:

[6]:
adata.obsm['ulm_estimate']
[6]:
ABL1 AHR AIRE AP1 APEX1 AR ARID1A ARID1B ARID3A ARID3B ... ZNF362 ZNF382 ZNF384 ZNF395 ZNF436 ZNF699 ZNF76 ZNF804A ZNF91 ZXDC
AAACATACAACCAC-1 3.105468 0.879592 2.909616 3.406131 0.822555 2.255649 0.622126 -0.454210 -0.497625 -0.454210 ... 0.051970 -3.070555 -0.287258 -0.454214 0.485032 -1.168097 0.816615 -0.090827 1.496588 2.328766
AAACATTGAGCTAC-1 0.644366 -0.912154 0.994992 2.265793 0.947906 1.649951 -0.594850 -0.594846 -0.651707 -0.594846 ... -0.334580 0.798244 0.266120 0.217652 -0.651681 -0.263382 1.700061 -0.118951 2.089825 0.693020
AAACATTGATCAGC-1 2.105423 2.411347 2.517772 5.470295 2.126797 3.830123 -0.566923 -0.566920 -0.621111 0.393613 ... -0.841067 -5.552263 0.400812 0.393611 -0.621086 -0.214621 -0.206983 1.408917 1.648628 0.393655
AAACCGTGCTTCCG-1 0.276449 -0.050781 3.699017 3.061379 2.169211 4.214366 -0.523785 -0.523782 -0.573849 -0.523782 ... 2.882433 -0.057149 -0.331257 -0.523789 0.356896 0.639145 0.739300 -0.104740 3.708728 2.535483
AAACCGTGTATGCG-1 2.003766 -0.067349 2.869071 3.876005 2.185347 1.854994 -0.393699 1.259139 -0.431328 -0.393696 ... 1.182478 0.528311 1.057657 2.912763 -0.431311 2.207839 -0.143738 -0.078726 2.713175 -0.393741
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
TTTCGAACTCTCAT-1 2.286176 1.772627 3.793108 3.976223 1.279253 4.544536 0.336520 -0.569478 0.203251 0.336517 ... 1.184737 -2.550669 -0.360157 -0.569485 -0.623888 0.154066 -0.207928 0.792007 3.299084 1.534470
TTTCTACTGAGGCA-1 2.274223 0.702174 1.214197 2.498593 0.813810 3.195549 0.318464 -0.589052 0.183192 0.318462 ... 0.350057 -1.457127 -0.372536 -0.589059 -0.645333 -0.807615 -0.215074 0.789607 2.952728 1.226170
TTTCTACTTCCTCG-1 2.906737 1.537232 2.975087 2.567488 0.765529 1.361353 -0.415441 -0.415438 -0.455148 -0.415438 ... -0.616327 -2.878397 -0.262738 -0.415443 -0.455130 -0.583188 -0.151677 -0.083074 1.635638 -0.415485
TTTGCATGAGAGGC-1 -0.308224 0.795947 2.813390 3.779697 3.331115 0.986302 -0.363216 -0.363214 -0.397933 -0.363214 ... 0.543865 0.487409 -0.229710 -0.363219 -0.397917 -0.308451 -0.132609 -0.072632 3.547983 1.242570
TTTGCATGCCTCAC-1 1.273584 0.915988 2.149884 3.688747 1.150673 1.625602 -0.442853 -0.442850 -0.485181 -0.442851 ... 0.129370 -2.014078 -0.280075 -0.442855 0.579456 -0.684479 -0.161685 -1.254577 1.927536 1.889836

2638 rows × 608 columns

Note: Each run of run_ulm overwrites what is inside of ulm_estimate and ulm_pvals. if you want to run ulm with other resources and still keep the activities inside the same AnnData object, you can store the results in any other key in .obsm with different names, for example:

[7]:
adata.obsm['collectri_ulm_estimate'] = adata.obsm['ulm_estimate'].copy()
adata.obsm['collectri_ulm_pvals'] = adata.obsm['ulm_pvals'].copy()
adata
[7]:
AnnData object with n_obs × n_vars = 2638 × 1838
    obs: 'n_genes', 'percent_mito', 'n_counts', 'louvain'
    var: 'n_cells'
    uns: 'draw_graph', 'louvain', 'louvain_colors', 'neighbors', 'pca', 'rank_genes_groups'
    obsm: 'X_pca', 'X_tsne', 'X_umap', 'X_draw_graph_fr', 'ulm_estimate', 'ulm_pvals', 'collectri_ulm_estimate', 'collectri_ulm_pvals'
    varm: 'PCs'
    obsp: 'distances', 'connectivities'

Visualization

To visualize the obtained scores, we can re-use many of scanpy’s plotting functions. First though, we need to extract them from the adata object.

[8]:
acts = dc.get_acts(adata, obsm_key='ulm_estimate')
acts
[8]:
AnnData object with n_obs × n_vars = 2638 × 608
    obs: 'n_genes', 'percent_mito', 'n_counts', 'louvain'
    uns: 'draw_graph', 'louvain', 'louvain_colors', 'neighbors', 'pca', 'rank_genes_groups'
    obsm: 'X_pca', 'X_tsne', 'X_umap', 'X_draw_graph_fr', 'ulm_estimate', 'ulm_pvals', 'collectri_ulm_estimate', 'collectri_ulm_pvals'

dc.get_acts returns a new AnnData object which holds the obtained activities in its .X attribute, allowing us to re-use many scanpy functions, for example:

[9]:
sc.pl.umap(acts, color=['PAX5', 'louvain'], cmap='RdBu_r', vcenter=0)
sc.pl.violin(acts, keys=['PAX5'], groupby='louvain', rotation=90)
../_images/notebooks_dorothea_20_0.png
../_images/notebooks_dorothea_20_1.png

Here we observe the activity infered for PAX5 across cells, which it is particulary active in B cells. Interestingly, PAX5 is a known TF crucial for B cell identity and function. The inference of activities from “foot-prints” of target genes is more informative than just looking at the molecular readouts of a given TF, as an example here is the gene expression of PAX5, which is not very informative by itself since it is just expressed in few cells:

[10]:
sc.pl.umap(adata, color=['PAX5', 'louvain'])
sc.pl.violin(adata, keys=['PAX5'], groupby='louvain', rotation=90)
../_images/notebooks_dorothea_22_0.png
../_images/notebooks_dorothea_22_1.png

Exploration

Let’s identify which are the top TF per cell type. We can do it by using the function dc.rank_sources_groups, which identifies marker TFs using the same statistical tests available in scanpy’s scanpy.tl.rank_genes_groups.

[11]:
df = dc.rank_sources_groups(acts, groupby='louvain', reference='rest', method='t-test_overestim_var')
df
[11]:
group reference names statistic meanchange pvals pvals_adj
0 B cells rest EBF1 46.169485 2.599952 7.623835e-180 1.158823e-177
1 B cells rest RFXANK 41.651199 10.032308 1.121601e-186 6.819333e-184
2 B cells rest RFXAP 41.465602 10.624727 1.992744e-185 4.038627e-183
3 B cells rest RFX5 41.407184 8.863535 1.182159e-185 3.593764e-183
4 B cells rest CIITA 38.505500 6.445218 7.559868e-173 9.192799e-171
... ... ... ... ... ... ... ...
4859 NK cells rest TGFB1I1 -11.229069 -1.846338 1.387798e-24 4.218906e-23
4860 NK cells rest HMGA2 -11.360268 -1.685328 5.055666e-25 1.707692e-23
4861 NK cells rest MYC -11.377993 -2.238815 6.106139e-25 1.953964e-23
4862 NK cells rest THRA -11.795926 -1.196717 2.315007e-26 8.797027e-25
4863 NK cells rest TCF4 -11.821820 -1.300579 8.805137e-27 3.569016e-25

4864 rows × 7 columns

We can then extract the top 3 markers per cell type:

[12]:
n_markers = 3
source_markers = df.groupby('group').head(n_markers).groupby('group')['names'].apply(lambda x: list(x)).to_dict()
source_markers
[12]:
{'B cells': ['EBF1', 'RFXANK', 'RFXAP'],
 'CD14+ Monocytes': ['ONECUT1', 'EHF', 'ELF3'],
 'CD4 T cells': ['ZBTB4', 'MYC', 'ZBED1'],
 'CD8 T cells': ['KLF13', 'NFKB2', 'RELB'],
 'Dendritic cells': ['RFXAP', 'RFXANK', 'RFX5'],
 'FCGR3A+ Monocytes': ['SIN3A', 'PPARD', 'SPIC'],
 'Megakaryocytes': ['PKNOX1', 'PBX2', 'FLI1'],
 'NK cells': ['ZGLP1', 'CEBPZ', 'ZNF395']}

We can plot the obtained markers:

[13]:
sc.pl.matrixplot(acts, source_markers, 'louvain', dendrogram=True, standard_scale='var',
                 colorbar_title='Z-scaled scores', cmap='RdBu_r')
WARNING: dendrogram data not found (using key=dendrogram_louvain). Running `sc.tl.dendrogram` with default parameters. For fine tuning it is recommended to run `sc.tl.dendrogram` independently.
../_images/notebooks_dorothea_28_1.png

We can check individual TFs by plotting their distributions:

[14]:
sc.pl.violin(acts, keys=['EBF1'], groupby='louvain', rotation=90)
../_images/notebooks_dorothea_30_0.png

Here we can observe the TF activities for EBF1, which is a known marker TF for B cells.

We can also plot net to see relevant TFs and target genes:

[15]:
dc.plot_network(
    net=net,
    n_sources=['PAX5', 'EBF1', 'RFXAP'],
    n_targets=15,
    node_size=100,
    s_cmap='white',
    t_cmap='white',
    c_pos_w='darkgreen',
    c_neg_w='darkred',
    figsize=(5, 5)
)
../_images/notebooks_dorothea_32_0.png

Note

If your data consist of different conditions with enough samples, we recommend to work with pseudo-bulk profiles instead. Check this vignette for more informatin.