decoupler.get_metadata_associations
- decoupler.get_metadata_associations(data, obs_keys=None, obsm_key=None, use_X=False, layer=None, uns_key=None, inplace=False, alpha=0.05, method='fdr_bh', verbose=False)
Associate the data to sample metadata using ANOVA. The data can be any kind of embedding stored in a layer, obsm or X matrix.
Requires statsmodels to be installed.
- Parameters:
- datalist, AnnData or MuData
The input data for ANOVA testing. It can be either a list of two pandas DataFrames [data, obs], an AnnData or MuData object.
- obs_keys: list, optional
Column names of obs (sample metadata) which should be tested. If not provided, all columns in obs will be used.
- obsm_keystr, optional
A key specifying where in obsm the data is located when providing an AnnData/MuData object. Either
obsm_key
,use_X
, orlayer
must be specified.- use_Xbool, optional
A boolean flag indicating whether to use the data in
.X
from the AnnData/MuData object when providing thedata
. Eitherobsm_key
,use_X
, orlayer
must be specified.- layerstr, optional
Which layer to use when providing an AnnData/MuData object. Either
obsm_key
,use_X
, orlayer
must be specified.- uns_keystr, optional
Where results will be stored the AnnData/MuData object.
- inplacebool, optional
Whether to store the results in the AnnData or MuData object. If
False
, the function returns a pandas DataFrame with the results.- alphafloat, optional
The significance level for multiple testing correction (default is 0.05).
- method(str, optional):
The method used for multiple testing correction. It can be one of the methods supported by
statsmodels.stats.multitest.multipletests
(default isfdr_bh
, i.e., Benjamini-Hochberg method).- verbosebool
Whether to show progress.
- Returns:
- results: pd.DataFrame
DataFrame with ANOVA results. If
data
is an AnnData or MuData object andinplace
isTrue
, the results are stored indata.uns[uns_key]
.